Referenced by ⇅
Year
cfbfastR : Access College Football Play by Play Data (Version 1.9.0)
2021
DriveML : Self-Drive Machine Learning Projects (Version 0.1.5)
2020
healthcareai : Tools for Healthcare Machine Learning (Version 2.5.1)
2017
mistat : Data Sets, Functions and Examples from the Book: "Modern
Industrial Statistics" by Kenett, Zacks and Amberti (Version 2.0.4)
2013
modelplotr : Plots to Evaluate the Business Performance of Predictive Models (Version 1.1.0)
2019
SPOTMisc : Misc Extensions for the "SPOT" Package (Version 1.19.52)
2021
workboots : Generate Bootstrap Prediction Intervals from a "tidymodels"
Workflow (Version 0.2.0)
2022
concrete : Continuous-Time Competing Risks Estimation using Targeted
Minimum Loss-Based Estimation (TMLE) (Version 1.0.5)
2023
FastRet : Retention Time Prediction in Liquid Chromatography (Version 1.1.3)
2024
MantaID : A Machine-Learning Based Tool to Automate the Identification of Biological Database IDs (Version 1.0.4)
2022
embed : Extra Recipes for Encoding Predictors (Version 1.1.4)
2018
BAGofT : A Binary Regression Adaptive Goodness-of-Fit Test (BAGofT) (Version 1.0.0)
2019
BioPred : An R Package for Biomarkers Analysis in Precision Medicine (Version 1.0.1)
2024
Boruta : Wrapper Algorithm for All Relevant Feature Selection (Version 8.0.0)
2009
CRE : Interpretable Discovery and Inference of Heterogeneous Treatment Effects (Version 0.2.7)
2022
CausalGPS : Matching on Generalized Propensity Scores with Continuous Exposures (Version 0.5.0)
2021
DALEXtra : Extension for 'DALEX' Package (Version 2.3.0)
2019
DICEM : Directness and Intensity of Conflict Expression (Version 0.1.0)
2024
DSAM : Data Splitting Algorithms for Model Developments (Version 1.0.2)
2023
DSWE : Data Science for Wind Energy (Version 1.8.2)
2021
DeepLearningCausal : Causal Inference with Super Learner and Deep Neural Networks (Version 0.0.104)
2024
EFAfactors : Determining the Number of Factors in Exploratory Factor Analysis (Version 1.1.0)
2024
EIX : Explain Interactions in 'XGBoost' (Version 1.2.0)
2019
FLAME : Interpretable Matching for Causal Inference (Version 2.1.1)
2018
FeatureHashing : Creates a Model Matrix via Feature Hashing with a Formula Interface (Version 0.9.2)
2014
GPCERF : Gaussian Processes for Estimating Causal Exposure Response Curves (Version 0.2.4)
2022
GeneralisedCovarianceMeasure : Test for Conditional Independence Based on the Generalized Covariance Measure (GCM) (Version 0.2.0)
2019
GenericML : Generic Machine Learning Inference (Version 0.2.2)
2021
ImHD : Artificial Intelligence Based Machine Learning Algorithms for Height Diameter Relationships of Conifer Trees (Version 0.1.0)
2023
LTFHPlus : Implementation of LT-FH++ (Version 2.1.1)
2024
MBMethPred : Medulloblastoma Subgroups Prediction (Version 0.1.4.2)
2022
MSclassifR : Automated Classification of Mass Spectra (Version 0.3.3)
2022
MachineShop : Machine Learning Models and Tools (Version 3.8.0)
2018
ParBayesianOptimization : Parallel Bayesian Optimization of Hyperparameters (Version 1.2.6)
2018
PheCAP : High-Throughput Phenotyping with EHR using a Common Automated Pipeline (Version 1.2.1)
2020
PoweREST : A Bootstrap-Based Power Estimation Tool for Spatial Transcriptomics (Version 0.1.0)
2024
PriceIndices : Calculating Bilateral and Multilateral Price Indexes (Version 0.2.2)
2021
SELF : A Structural Equation Embedded Likelihood Framework for Causal Discovery (Version 0.1.1)
2017
SEMdeep : Structural Equation Modeling with Deep Neural Network and Machine Learning (Version 0.1.0)
2024
SHAPforxgboost : SHAP Plots for 'XGBoost' (Version 0.1.3)
2019
SuperLearner : Super Learner Prediction (Version 2.0-29)
2011
TSCI : Tools for Causal Inference with Possibly Invalid Instrumental Variables (Version 3.0.4)
2022
adapt4pv : Adaptive Approaches for Signal Detection in Pharmacovigilance (Version 0.2-3)
2020
alookr : Model Classifier for Binary Classification (Version 0.3.9)
2020
audrex : Automatic Dynamic Regression using Extreme Gradient Boosting (Version 2.0.1)
2021
autoBagging : Learning to Rank Bagging Workflows with Metalearning (Version 0.1.0)
2017
autostats : Auto Stats (Version 0.4.1)
2021
bigsnpr : Analysis of Massive SNP Arrays (Version 1.12.15)
2017
biomod2 : Ensemble Platform for Species Distribution Modeling (Version 4.2-5-2)
2012
breakDown : Model Agnostic Explainers for Individual Predictions (Version 0.2.2)
2018
bundle : Serialize Model Objects with a Consistent Interface (Version 0.1.1)
2022
butcher : Model Butcher (Version 0.3.4)
2019
causalweight : Estimation Methods for Causal Inference Based on Inverse Probability Weighting (Version 1.1.1)
2018
coefplot : Plots Coefficients from Fitted Models (Version 1.2.8)
2011
cornet : Penalised Regression for Dichotomised Outcomes (Version 1.0.0)
2019
cpfa : Classification with Parallel Factor Analysis (Version 1.1-5)
2022
creditmodel : Toolkit for Credit Modeling, Analysis and Visualization (Version 1.3.1)
2019
csmpv : Biomarker Confirmation, Selection, Modelling, Prediction, and Validation (Version 1.0.3)
2024
cuda.ml : R Interface for the RAPIDS cuML Suite of Libraries (Version 0.3.2)
2021
dblr : Discrete Boosting Logistic Regression (Version 0.1.0)
2017
ddml : Double/Debiased Machine Learning (Version 0.3.0)
2023
drape : Doubly Robust Average Partial Effects (Version 0.0.1)
2023
easyalluvial : Generate Alluvial Plots with a Single Line of Code (Version 0.3.2)
2018
explore : Simplifies Exploratory Data Analysis (Version 1.3.2)
2019
familiar : End-to-End Automated Machine Learning and Model Evaluation (Version 1.5.0)
2022
fastrmodels : Models for the 'nflfastR' Package (Version 1.0.2)
2021
fastshap : Fast Approximate Shapley Values (Version 0.1.1)
2019
fdm2id : Data Mining and R Programming for Beginners (Version 0.9.9)
2019
flevr : Flexible, Ensemble-Based Variable Selection with Potentially Missing Data (Version 0.0.4)
2023
flowml : A Backend for a 'nextflow' Pipeline that Performs Machine-Learning-Based Modeling of Biomedical Data (Version 0.1.3)
2023
forecastML : Time Series Forecasting with Machine Learning Methods (Version 0.9.0)
2019
glmnetr : Nested Cross Validation for the Relaxed Lasso and Other Machine Learning Models (Version 0.5-4)
2022
iimi : Identifying Infection with Machine Intelligence (Version 1.1.1)
2024
inTrees : Interpret Tree Ensembles (Version 1.4)
2014
irboost : Iteratively Reweighted Boosting for Robust Analysis (Version 0.1-1.5)
2022
latentFactoR : Data Simulation Based on Latent Factors (Version 0.0.6)
2022
lime : Local Interpretable Model-Agnostic Explanations (Version 0.5.3)
2017
marginaleffects : Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests (Version 0.23.0)
2021
mcboost : Multi-Calibration Boosting (Version 0.4.3)
2021
miesmuschel : Mixed Integer Evolution Strategies (Version 0.0.4-2)
2022
mikropml : User-Friendly R Package for Supervised Machine Learning Pipelines (Version 1.6.1)
2020
mixgb : Multiple Imputation Through 'XGBoost' (Version 1.0.2)
2022
mlflow : Interface to 'MLflow' (Version 2.16.2)
2018
mllrnrs : R6-Based ML Learners for 'mlexperiments' (Version 0.0.4)
2023
mlr3benchmark : Analysis and Visualisation of Benchmark Experiments (Version 0.1.6)
2020
mlr : Machine Learning in R (Version 2.19.2)
2013
mlr3hyperband : Hyperband for 'mlr3' (Version 0.6.0)
2020
mlr3learners : Recommended Learners for 'mlr3' (Version 0.8.0)
2019
mlr3shiny : Machine Learning in 'shiny' with 'mlr3' (Version 0.3.0)
2020
mlr3tuning : Hyperparameter Optimization for 'mlr3' (Version 1.0.2)
2019
mlr3tuningspaces : Search Spaces for 'mlr3' (Version 0.5.1)
2021
mlr3viz : Visualizations for 'mlr3' (Version 0.9.0)
2020
mlsurvlrnrs : R6-Based ML Survival Learners for 'mlexperiments' (Version 0.0.4)
2023
modelStudio : Interactive Studio for Explanatory Model Analysis (Version 3.1.2)
2019
modeltime.ensemble : Ensemble Algorithms for Time Series Forecasting with Modeltime (Version 1.0.4)
2020
modeltime : The Tidymodels Extension for Time Series Modeling (Version 1.3.1)
2020
nfl4th : Functions to Calculate Optimal Fourth Down Decisions in the National Football League (Version 1.0.4)
2021
nflfastR : Functions to Efficiently Access NFL Play by Play Data (Version 4.6.1)
2020
nlpred : Estimators of Non-Linear Cross-Validated Risks Optimized for Small Samples (Version 1.0.1)
2019
nsga3 : An Implementation of Non-Dominated Sorting Genetic Algorithm III for Feature Selection (Version 0.0.3)
2019
offsetreg : An Extension of 'Tidymodels' Supporting Offset Terms (Version 1.1.0)
2024
oncrawlR : Machine Learning for S.E.O (Version 0.2.0)
2019
parsnip : A Common API to Modeling and Analysis Functions (Version 1.2.1)
2018
pdp : Partial Dependence Plots (Version 0.8.1)
2016
personalized : Estimation and Validation Methods for Subgroup Identification and Personalized Medicine (Version 0.2.7)
2017
pmml : Generate PMML for Various Models (Version 2.5.2)
2007
polle : Policy Learning (Version 1.5)
2022
predhy.GUI : Genomic Prediction of Hybrid Performance with Graphical User Interface (Version 2.0.1)
2023
predhy : Genomic Prediction of Hybrid Performance (Version 2.1.1)
2019
predictoR : Predictive Data Analysis System (Version 3.0.10)
2019
promor : Proteomics Data Analysis and Modeling Tools (Version 0.2.1)
2022
qeML : Quick and Easy Machine Learning Tools (Version 1.1)
2023
r2pmml : Convert R Models to PMML (Version 0.28.0)
2019
rBayesianOptimization : Bayesian Optimization of Hyperparameters (Version 1.2.1)
2016
radiant.model : Model Menu for Radiant: Business Analytics using R and Shiny (Version 1.6.7)
2016
rattle : Graphical User Interface for Data Science in R (Version 5.5.1)
2013
rminer : Data Mining Classification and Regression Methods (Version 1.4.7)
2011
roseRF : ROSE Random Forests for Robust Semiparametric Efficient Estimation (Version 0.1.0)
2024
sense : Automatic Stacked Ensemble for Regression Tasks (Version 1.1.0)
2021
sentiment.ai : Simple Sentiment Analysis Using Deep Learning (Version 0.1.1)
2022
shapr : Prediction Explanation with Dependence-Aware Shapley Values (Version 0.2.2)
2020
shapviz : SHAP Visualizations (Version 0.9.6)
2022
simPop : Simulation of Complex Synthetic Data Information (Version 2.1.3)
2014
sits : Satellite Image Time Series Analysis for Earth Observation Data Cubes (Version 1.5.1)
2022
stackgbm : Stacked Gradient Boosting Machines (Version 0.1.0)
2024
superMICE : SuperLearner Method for MICE (Version 1.1.1)
2022
superml : Build Machine Learning Models Like Using Python's Scikit-Learn Library in R (Version 0.5.7)
2018
survex : Explainable Machine Learning in Survival Analysis (Version 1.2.0)
2022
surveyvoi : Survey Value of Information (Version 1.0.6)
2021
targeted : Targeted Inference (Version 0.5)
2020
tidybins : Make Tidy Bins (Version 0.1.1)
2021
tidypredict : Run Predictions Inside the Database (Version 0.5)
2018
tidysdm : Species Distribution Models with Tidymodels (Version 0.9.5)
2023
traineR : Predictive (Classification and Regression) Models Homologator (Version 2.2.0)
2019
treeshap : Compute SHAP Values for Your Tree-Based Models Using the 'TreeSHAP' Algorithm (Version 0.3.1)
2023
tsensembler : Dynamic Ensembles for Time Series Forecasting (Version 0.1.0)
2017
tune : Tidy Tuning Tools (Version 1.2.1)
2020
twang : Toolkit for Weighting and Analysis of Nonequivalent Groups (Version 2.6.1)
2006
twangRDC : Gradient Boosting for Linkage Failure in FSRDCs (Version 1.0)
2021
twangMediation : Twang Causal Mediation Modeling via Weighting (Version 1.2)
2021
utiml : Utilities for Multi-Label Learning (Version 0.1.7)
2016
vetiver : Version, Share, Deploy, and Monitor Models (Version 0.2.5)
2021
vimp : Perform Inference on Algorithm-Agnostic Variable Importance (Version 2.3.3)
2018
vip : Variable Importance Plots (Version 0.4.1)
2018
visaOTR : Valid Improved Sparsity A-Learning for Optimal Treatment Decision (Version 0.1.0)
2022
vivid : Variable Importance and Variable Interaction Displays (Version 0.2.9)
2021
wactor : Word Factor Vectors (Version 0.0.1)
2019
weightedGCM : Weighted Generalised Covariance Measure Conditional Independence Test (Version 0.1.0)
2021
xgb2sql : Convert Trained 'XGBoost' Model to SQL Query (Version 0.1.2)
2019
xrf : eXtreme RuleFit (Version 0.2.2)
2019
Showing 1-150 of 150
RPKG Scholar presents a tabulation of an author's contribution in the development of R packages stored in the Comprehensive R Archive Network (CRAN).
Within this site, we consider package dependencies (suggests,imports,depends,enhances) as citations because we believe that using one's package to develop another is tantamount to citing the author of the package being imported, suggested or enhanced.